direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×C22×C20, C60⋊14C23, C30.85C24, C3⋊1(C23×C20), C6⋊1(C22×C20), C15⋊10(C23×C4), (C2×C60)⋊52C22, C12⋊3(C22×C10), (C22×C60)⋊24C2, C30⋊10(C22×C4), C6.2(C23×C10), (C22×C12)⋊10C10, (S3×C23).3C10, C23.39(S3×C10), C10.70(S3×C23), D6.8(C22×C10), (S3×C10).44C23, (C2×C30).442C23, Dic3⋊3(C22×C10), (C5×Dic3)⋊11C23, (C22×C10).153D6, (C22×Dic3)⋊10C10, (C10×Dic3)⋊39C22, (C22×C30).182C22, (C2×C6)⋊6(C2×C20), (C2×C30)⋊38(C2×C4), (C2×C12)⋊14(C2×C10), C2.1(S3×C22×C10), (Dic3×C2×C10)⋊21C2, (S3×C22×C10).6C2, C22.29(S3×C2×C10), (C2×Dic3)⋊12(C2×C10), (S3×C2×C10).127C22, (C2×C6).63(C22×C10), (C22×C6).44(C2×C10), (C22×S3).35(C2×C10), (C2×C10).376(C22×S3), SmallGroup(480,1151)
Series: Derived ►Chief ►Lower central ►Upper central
C3 — S3×C22×C20 |
Subgroups: 836 in 472 conjugacy classes, 290 normal (22 characteristic)
C1, C2, C2 [×6], C2 [×8], C3, C4 [×4], C4 [×4], C22 [×7], C22 [×28], C5, S3 [×8], C6, C6 [×6], C2×C4 [×6], C2×C4 [×22], C23, C23 [×14], C10, C10 [×6], C10 [×8], Dic3 [×4], C12 [×4], D6 [×28], C2×C6 [×7], C15, C22×C4, C22×C4 [×13], C24, C20 [×4], C20 [×4], C2×C10 [×7], C2×C10 [×28], C4×S3 [×16], C2×Dic3 [×6], C2×C12 [×6], C22×S3 [×14], C22×C6, C5×S3 [×8], C30, C30 [×6], C23×C4, C2×C20 [×6], C2×C20 [×22], C22×C10, C22×C10 [×14], S3×C2×C4 [×12], C22×Dic3, C22×C12, S3×C23, C5×Dic3 [×4], C60 [×4], S3×C10 [×28], C2×C30 [×7], C22×C20, C22×C20 [×13], C23×C10, S3×C22×C4, S3×C20 [×16], C10×Dic3 [×6], C2×C60 [×6], S3×C2×C10 [×14], C22×C30, C23×C20, S3×C2×C20 [×12], Dic3×C2×C10, C22×C60, S3×C22×C10, S3×C22×C20
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C5, S3, C2×C4 [×28], C23 [×15], C10 [×15], D6 [×7], C22×C4 [×14], C24, C20 [×8], C2×C10 [×35], C4×S3 [×4], C22×S3 [×7], C5×S3, C23×C4, C2×C20 [×28], C22×C10 [×15], S3×C2×C4 [×6], S3×C23, S3×C10 [×7], C22×C20 [×14], C23×C10, S3×C22×C4, S3×C20 [×4], S3×C2×C10 [×7], C23×C20, S3×C2×C20 [×6], S3×C22×C10, S3×C22×C20
Generators and relations
G = < a,b,c,d,e | a2=b2=c20=d3=e2=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
(1 185)(2 186)(3 187)(4 188)(5 189)(6 190)(7 191)(8 192)(9 193)(10 194)(11 195)(12 196)(13 197)(14 198)(15 199)(16 200)(17 181)(18 182)(19 183)(20 184)(21 84)(22 85)(23 86)(24 87)(25 88)(26 89)(27 90)(28 91)(29 92)(30 93)(31 94)(32 95)(33 96)(34 97)(35 98)(36 99)(37 100)(38 81)(39 82)(40 83)(41 76)(42 77)(43 78)(44 79)(45 80)(46 61)(47 62)(48 63)(49 64)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)(57 72)(58 73)(59 74)(60 75)(101 218)(102 219)(103 220)(104 201)(105 202)(106 203)(107 204)(108 205)(109 206)(110 207)(111 208)(112 209)(113 210)(114 211)(115 212)(116 213)(117 214)(118 215)(119 216)(120 217)(121 147)(122 148)(123 149)(124 150)(125 151)(126 152)(127 153)(128 154)(129 155)(130 156)(131 157)(132 158)(133 159)(134 160)(135 141)(136 142)(137 143)(138 144)(139 145)(140 146)(161 230)(162 231)(163 232)(164 233)(165 234)(166 235)(167 236)(168 237)(169 238)(170 239)(171 240)(172 221)(173 222)(174 223)(175 224)(176 225)(177 226)(178 227)(179 228)(180 229)
(1 102)(2 103)(3 104)(4 105)(5 106)(6 107)(7 108)(8 109)(9 110)(10 111)(11 112)(12 113)(13 114)(14 115)(15 116)(16 117)(17 118)(18 119)(19 120)(20 101)(21 154)(22 155)(23 156)(24 157)(25 158)(26 159)(27 160)(28 141)(29 142)(30 143)(31 144)(32 145)(33 146)(34 147)(35 148)(36 149)(37 150)(38 151)(39 152)(40 153)(41 162)(42 163)(43 164)(44 165)(45 166)(46 167)(47 168)(48 169)(49 170)(50 171)(51 172)(52 173)(53 174)(54 175)(55 176)(56 177)(57 178)(58 179)(59 180)(60 161)(61 236)(62 237)(63 238)(64 239)(65 240)(66 221)(67 222)(68 223)(69 224)(70 225)(71 226)(72 227)(73 228)(74 229)(75 230)(76 231)(77 232)(78 233)(79 234)(80 235)(81 125)(82 126)(83 127)(84 128)(85 129)(86 130)(87 131)(88 132)(89 133)(90 134)(91 135)(92 136)(93 137)(94 138)(95 139)(96 140)(97 121)(98 122)(99 123)(100 124)(181 215)(182 216)(183 217)(184 218)(185 219)(186 220)(187 201)(188 202)(189 203)(190 204)(191 205)(192 206)(193 207)(194 208)(195 209)(196 210)(197 211)(198 212)(199 213)(200 214)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220)(221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240)
(1 82 69)(2 83 70)(3 84 71)(4 85 72)(5 86 73)(6 87 74)(7 88 75)(8 89 76)(9 90 77)(10 91 78)(11 92 79)(12 93 80)(13 94 61)(14 95 62)(15 96 63)(16 97 64)(17 98 65)(18 99 66)(19 100 67)(20 81 68)(21 56 187)(22 57 188)(23 58 189)(24 59 190)(25 60 191)(26 41 192)(27 42 193)(28 43 194)(29 44 195)(30 45 196)(31 46 197)(32 47 198)(33 48 199)(34 49 200)(35 50 181)(36 51 182)(37 52 183)(38 53 184)(39 54 185)(40 55 186)(101 125 223)(102 126 224)(103 127 225)(104 128 226)(105 129 227)(106 130 228)(107 131 229)(108 132 230)(109 133 231)(110 134 232)(111 135 233)(112 136 234)(113 137 235)(114 138 236)(115 139 237)(116 140 238)(117 121 239)(118 122 240)(119 123 221)(120 124 222)(141 164 208)(142 165 209)(143 166 210)(144 167 211)(145 168 212)(146 169 213)(147 170 214)(148 171 215)(149 172 216)(150 173 217)(151 174 218)(152 175 219)(153 176 220)(154 177 201)(155 178 202)(156 179 203)(157 180 204)(158 161 205)(159 162 206)(160 163 207)
(1 219)(2 220)(3 201)(4 202)(5 203)(6 204)(7 205)(8 206)(9 207)(10 208)(11 209)(12 210)(13 211)(14 212)(15 213)(16 214)(17 215)(18 216)(19 217)(20 218)(21 226)(22 227)(23 228)(24 229)(25 230)(26 231)(27 232)(28 233)(29 234)(30 235)(31 236)(32 237)(33 238)(34 239)(35 240)(36 221)(37 222)(38 223)(39 224)(40 225)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 121)(50 122)(51 123)(52 124)(53 125)(54 126)(55 127)(56 128)(57 129)(58 130)(59 131)(60 132)(61 144)(62 145)(63 146)(64 147)(65 148)(66 149)(67 150)(68 151)(69 152)(70 153)(71 154)(72 155)(73 156)(74 157)(75 158)(76 159)(77 160)(78 141)(79 142)(80 143)(81 174)(82 175)(83 176)(84 177)(85 178)(86 179)(87 180)(88 161)(89 162)(90 163)(91 164)(92 165)(93 166)(94 167)(95 168)(96 169)(97 170)(98 171)(99 172)(100 173)(101 184)(102 185)(103 186)(104 187)(105 188)(106 189)(107 190)(108 191)(109 192)(110 193)(111 194)(112 195)(113 196)(114 197)(115 198)(116 199)(117 200)(118 181)(119 182)(120 183)
G:=sub<Sym(240)| (1,185)(2,186)(3,187)(4,188)(5,189)(6,190)(7,191)(8,192)(9,193)(10,194)(11,195)(12,196)(13,197)(14,198)(15,199)(16,200)(17,181)(18,182)(19,183)(20,184)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,99)(37,100)(38,81)(39,82)(40,83)(41,76)(42,77)(43,78)(44,79)(45,80)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,73)(59,74)(60,75)(101,218)(102,219)(103,220)(104,201)(105,202)(106,203)(107,204)(108,205)(109,206)(110,207)(111,208)(112,209)(113,210)(114,211)(115,212)(116,213)(117,214)(118,215)(119,216)(120,217)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(131,157)(132,158)(133,159)(134,160)(135,141)(136,142)(137,143)(138,144)(139,145)(140,146)(161,230)(162,231)(163,232)(164,233)(165,234)(166,235)(167,236)(168,237)(169,238)(170,239)(171,240)(172,221)(173,222)(174,223)(175,224)(176,225)(177,226)(178,227)(179,228)(180,229), (1,102)(2,103)(3,104)(4,105)(5,106)(6,107)(7,108)(8,109)(9,110)(10,111)(11,112)(12,113)(13,114)(14,115)(15,116)(16,117)(17,118)(18,119)(19,120)(20,101)(21,154)(22,155)(23,156)(24,157)(25,158)(26,159)(27,160)(28,141)(29,142)(30,143)(31,144)(32,145)(33,146)(34,147)(35,148)(36,149)(37,150)(38,151)(39,152)(40,153)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,169)(49,170)(50,171)(51,172)(52,173)(53,174)(54,175)(55,176)(56,177)(57,178)(58,179)(59,180)(60,161)(61,236)(62,237)(63,238)(64,239)(65,240)(66,221)(67,222)(68,223)(69,224)(70,225)(71,226)(72,227)(73,228)(74,229)(75,230)(76,231)(77,232)(78,233)(79,234)(80,235)(81,125)(82,126)(83,127)(84,128)(85,129)(86,130)(87,131)(88,132)(89,133)(90,134)(91,135)(92,136)(93,137)(94,138)(95,139)(96,140)(97,121)(98,122)(99,123)(100,124)(181,215)(182,216)(183,217)(184,218)(185,219)(186,220)(187,201)(188,202)(189,203)(190,204)(191,205)(192,206)(193,207)(194,208)(195,209)(196,210)(197,211)(198,212)(199,213)(200,214), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,82,69)(2,83,70)(3,84,71)(4,85,72)(5,86,73)(6,87,74)(7,88,75)(8,89,76)(9,90,77)(10,91,78)(11,92,79)(12,93,80)(13,94,61)(14,95,62)(15,96,63)(16,97,64)(17,98,65)(18,99,66)(19,100,67)(20,81,68)(21,56,187)(22,57,188)(23,58,189)(24,59,190)(25,60,191)(26,41,192)(27,42,193)(28,43,194)(29,44,195)(30,45,196)(31,46,197)(32,47,198)(33,48,199)(34,49,200)(35,50,181)(36,51,182)(37,52,183)(38,53,184)(39,54,185)(40,55,186)(101,125,223)(102,126,224)(103,127,225)(104,128,226)(105,129,227)(106,130,228)(107,131,229)(108,132,230)(109,133,231)(110,134,232)(111,135,233)(112,136,234)(113,137,235)(114,138,236)(115,139,237)(116,140,238)(117,121,239)(118,122,240)(119,123,221)(120,124,222)(141,164,208)(142,165,209)(143,166,210)(144,167,211)(145,168,212)(146,169,213)(147,170,214)(148,171,215)(149,172,216)(150,173,217)(151,174,218)(152,175,219)(153,176,220)(154,177,201)(155,178,202)(156,179,203)(157,180,204)(158,161,205)(159,162,206)(160,163,207), (1,219)(2,220)(3,201)(4,202)(5,203)(6,204)(7,205)(8,206)(9,207)(10,208)(11,209)(12,210)(13,211)(14,212)(15,213)(16,214)(17,215)(18,216)(19,217)(20,218)(21,226)(22,227)(23,228)(24,229)(25,230)(26,231)(27,232)(28,233)(29,234)(30,235)(31,236)(32,237)(33,238)(34,239)(35,240)(36,221)(37,222)(38,223)(39,224)(40,225)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,141)(79,142)(80,143)(81,174)(82,175)(83,176)(84,177)(85,178)(86,179)(87,180)(88,161)(89,162)(90,163)(91,164)(92,165)(93,166)(94,167)(95,168)(96,169)(97,170)(98,171)(99,172)(100,173)(101,184)(102,185)(103,186)(104,187)(105,188)(106,189)(107,190)(108,191)(109,192)(110,193)(111,194)(112,195)(113,196)(114,197)(115,198)(116,199)(117,200)(118,181)(119,182)(120,183)>;
G:=Group( (1,185)(2,186)(3,187)(4,188)(5,189)(6,190)(7,191)(8,192)(9,193)(10,194)(11,195)(12,196)(13,197)(14,198)(15,199)(16,200)(17,181)(18,182)(19,183)(20,184)(21,84)(22,85)(23,86)(24,87)(25,88)(26,89)(27,90)(28,91)(29,92)(30,93)(31,94)(32,95)(33,96)(34,97)(35,98)(36,99)(37,100)(38,81)(39,82)(40,83)(41,76)(42,77)(43,78)(44,79)(45,80)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,73)(59,74)(60,75)(101,218)(102,219)(103,220)(104,201)(105,202)(106,203)(107,204)(108,205)(109,206)(110,207)(111,208)(112,209)(113,210)(114,211)(115,212)(116,213)(117,214)(118,215)(119,216)(120,217)(121,147)(122,148)(123,149)(124,150)(125,151)(126,152)(127,153)(128,154)(129,155)(130,156)(131,157)(132,158)(133,159)(134,160)(135,141)(136,142)(137,143)(138,144)(139,145)(140,146)(161,230)(162,231)(163,232)(164,233)(165,234)(166,235)(167,236)(168,237)(169,238)(170,239)(171,240)(172,221)(173,222)(174,223)(175,224)(176,225)(177,226)(178,227)(179,228)(180,229), (1,102)(2,103)(3,104)(4,105)(5,106)(6,107)(7,108)(8,109)(9,110)(10,111)(11,112)(12,113)(13,114)(14,115)(15,116)(16,117)(17,118)(18,119)(19,120)(20,101)(21,154)(22,155)(23,156)(24,157)(25,158)(26,159)(27,160)(28,141)(29,142)(30,143)(31,144)(32,145)(33,146)(34,147)(35,148)(36,149)(37,150)(38,151)(39,152)(40,153)(41,162)(42,163)(43,164)(44,165)(45,166)(46,167)(47,168)(48,169)(49,170)(50,171)(51,172)(52,173)(53,174)(54,175)(55,176)(56,177)(57,178)(58,179)(59,180)(60,161)(61,236)(62,237)(63,238)(64,239)(65,240)(66,221)(67,222)(68,223)(69,224)(70,225)(71,226)(72,227)(73,228)(74,229)(75,230)(76,231)(77,232)(78,233)(79,234)(80,235)(81,125)(82,126)(83,127)(84,128)(85,129)(86,130)(87,131)(88,132)(89,133)(90,134)(91,135)(92,136)(93,137)(94,138)(95,139)(96,140)(97,121)(98,122)(99,123)(100,124)(181,215)(182,216)(183,217)(184,218)(185,219)(186,220)(187,201)(188,202)(189,203)(190,204)(191,205)(192,206)(193,207)(194,208)(195,209)(196,210)(197,211)(198,212)(199,213)(200,214), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220)(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240), (1,82,69)(2,83,70)(3,84,71)(4,85,72)(5,86,73)(6,87,74)(7,88,75)(8,89,76)(9,90,77)(10,91,78)(11,92,79)(12,93,80)(13,94,61)(14,95,62)(15,96,63)(16,97,64)(17,98,65)(18,99,66)(19,100,67)(20,81,68)(21,56,187)(22,57,188)(23,58,189)(24,59,190)(25,60,191)(26,41,192)(27,42,193)(28,43,194)(29,44,195)(30,45,196)(31,46,197)(32,47,198)(33,48,199)(34,49,200)(35,50,181)(36,51,182)(37,52,183)(38,53,184)(39,54,185)(40,55,186)(101,125,223)(102,126,224)(103,127,225)(104,128,226)(105,129,227)(106,130,228)(107,131,229)(108,132,230)(109,133,231)(110,134,232)(111,135,233)(112,136,234)(113,137,235)(114,138,236)(115,139,237)(116,140,238)(117,121,239)(118,122,240)(119,123,221)(120,124,222)(141,164,208)(142,165,209)(143,166,210)(144,167,211)(145,168,212)(146,169,213)(147,170,214)(148,171,215)(149,172,216)(150,173,217)(151,174,218)(152,175,219)(153,176,220)(154,177,201)(155,178,202)(156,179,203)(157,180,204)(158,161,205)(159,162,206)(160,163,207), (1,219)(2,220)(3,201)(4,202)(5,203)(6,204)(7,205)(8,206)(9,207)(10,208)(11,209)(12,210)(13,211)(14,212)(15,213)(16,214)(17,215)(18,216)(19,217)(20,218)(21,226)(22,227)(23,228)(24,229)(25,230)(26,231)(27,232)(28,233)(29,234)(30,235)(31,236)(32,237)(33,238)(34,239)(35,240)(36,221)(37,222)(38,223)(39,224)(40,225)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,121)(50,122)(51,123)(52,124)(53,125)(54,126)(55,127)(56,128)(57,129)(58,130)(59,131)(60,132)(61,144)(62,145)(63,146)(64,147)(65,148)(66,149)(67,150)(68,151)(69,152)(70,153)(71,154)(72,155)(73,156)(74,157)(75,158)(76,159)(77,160)(78,141)(79,142)(80,143)(81,174)(82,175)(83,176)(84,177)(85,178)(86,179)(87,180)(88,161)(89,162)(90,163)(91,164)(92,165)(93,166)(94,167)(95,168)(96,169)(97,170)(98,171)(99,172)(100,173)(101,184)(102,185)(103,186)(104,187)(105,188)(106,189)(107,190)(108,191)(109,192)(110,193)(111,194)(112,195)(113,196)(114,197)(115,198)(116,199)(117,200)(118,181)(119,182)(120,183) );
G=PermutationGroup([(1,185),(2,186),(3,187),(4,188),(5,189),(6,190),(7,191),(8,192),(9,193),(10,194),(11,195),(12,196),(13,197),(14,198),(15,199),(16,200),(17,181),(18,182),(19,183),(20,184),(21,84),(22,85),(23,86),(24,87),(25,88),(26,89),(27,90),(28,91),(29,92),(30,93),(31,94),(32,95),(33,96),(34,97),(35,98),(36,99),(37,100),(38,81),(39,82),(40,83),(41,76),(42,77),(43,78),(44,79),(45,80),(46,61),(47,62),(48,63),(49,64),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71),(57,72),(58,73),(59,74),(60,75),(101,218),(102,219),(103,220),(104,201),(105,202),(106,203),(107,204),(108,205),(109,206),(110,207),(111,208),(112,209),(113,210),(114,211),(115,212),(116,213),(117,214),(118,215),(119,216),(120,217),(121,147),(122,148),(123,149),(124,150),(125,151),(126,152),(127,153),(128,154),(129,155),(130,156),(131,157),(132,158),(133,159),(134,160),(135,141),(136,142),(137,143),(138,144),(139,145),(140,146),(161,230),(162,231),(163,232),(164,233),(165,234),(166,235),(167,236),(168,237),(169,238),(170,239),(171,240),(172,221),(173,222),(174,223),(175,224),(176,225),(177,226),(178,227),(179,228),(180,229)], [(1,102),(2,103),(3,104),(4,105),(5,106),(6,107),(7,108),(8,109),(9,110),(10,111),(11,112),(12,113),(13,114),(14,115),(15,116),(16,117),(17,118),(18,119),(19,120),(20,101),(21,154),(22,155),(23,156),(24,157),(25,158),(26,159),(27,160),(28,141),(29,142),(30,143),(31,144),(32,145),(33,146),(34,147),(35,148),(36,149),(37,150),(38,151),(39,152),(40,153),(41,162),(42,163),(43,164),(44,165),(45,166),(46,167),(47,168),(48,169),(49,170),(50,171),(51,172),(52,173),(53,174),(54,175),(55,176),(56,177),(57,178),(58,179),(59,180),(60,161),(61,236),(62,237),(63,238),(64,239),(65,240),(66,221),(67,222),(68,223),(69,224),(70,225),(71,226),(72,227),(73,228),(74,229),(75,230),(76,231),(77,232),(78,233),(79,234),(80,235),(81,125),(82,126),(83,127),(84,128),(85,129),(86,130),(87,131),(88,132),(89,133),(90,134),(91,135),(92,136),(93,137),(94,138),(95,139),(96,140),(97,121),(98,122),(99,123),(100,124),(181,215),(182,216),(183,217),(184,218),(185,219),(186,220),(187,201),(188,202),(189,203),(190,204),(191,205),(192,206),(193,207),(194,208),(195,209),(196,210),(197,211),(198,212),(199,213),(200,214)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220),(221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240)], [(1,82,69),(2,83,70),(3,84,71),(4,85,72),(5,86,73),(6,87,74),(7,88,75),(8,89,76),(9,90,77),(10,91,78),(11,92,79),(12,93,80),(13,94,61),(14,95,62),(15,96,63),(16,97,64),(17,98,65),(18,99,66),(19,100,67),(20,81,68),(21,56,187),(22,57,188),(23,58,189),(24,59,190),(25,60,191),(26,41,192),(27,42,193),(28,43,194),(29,44,195),(30,45,196),(31,46,197),(32,47,198),(33,48,199),(34,49,200),(35,50,181),(36,51,182),(37,52,183),(38,53,184),(39,54,185),(40,55,186),(101,125,223),(102,126,224),(103,127,225),(104,128,226),(105,129,227),(106,130,228),(107,131,229),(108,132,230),(109,133,231),(110,134,232),(111,135,233),(112,136,234),(113,137,235),(114,138,236),(115,139,237),(116,140,238),(117,121,239),(118,122,240),(119,123,221),(120,124,222),(141,164,208),(142,165,209),(143,166,210),(144,167,211),(145,168,212),(146,169,213),(147,170,214),(148,171,215),(149,172,216),(150,173,217),(151,174,218),(152,175,219),(153,176,220),(154,177,201),(155,178,202),(156,179,203),(157,180,204),(158,161,205),(159,162,206),(160,163,207)], [(1,219),(2,220),(3,201),(4,202),(5,203),(6,204),(7,205),(8,206),(9,207),(10,208),(11,209),(12,210),(13,211),(14,212),(15,213),(16,214),(17,215),(18,216),(19,217),(20,218),(21,226),(22,227),(23,228),(24,229),(25,230),(26,231),(27,232),(28,233),(29,234),(30,235),(31,236),(32,237),(33,238),(34,239),(35,240),(36,221),(37,222),(38,223),(39,224),(40,225),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,121),(50,122),(51,123),(52,124),(53,125),(54,126),(55,127),(56,128),(57,129),(58,130),(59,131),(60,132),(61,144),(62,145),(63,146),(64,147),(65,148),(66,149),(67,150),(68,151),(69,152),(70,153),(71,154),(72,155),(73,156),(74,157),(75,158),(76,159),(77,160),(78,141),(79,142),(80,143),(81,174),(82,175),(83,176),(84,177),(85,178),(86,179),(87,180),(88,161),(89,162),(90,163),(91,164),(92,165),(93,166),(94,167),(95,168),(96,169),(97,170),(98,171),(99,172),(100,173),(101,184),(102,185),(103,186),(104,187),(105,188),(106,189),(107,190),(108,191),(109,192),(110,193),(111,194),(112,195),(113,196),(114,197),(115,198),(116,199),(117,200),(118,181),(119,182),(120,183)])
Matrix representation ►G ⊆ GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 60 | 0 |
0 | 0 | 0 | 60 |
1 | 0 | 0 | 0 |
0 | 60 | 0 | 0 |
0 | 0 | 60 | 0 |
0 | 0 | 0 | 60 |
28 | 0 | 0 | 0 |
0 | 60 | 0 | 0 |
0 | 0 | 53 | 0 |
0 | 0 | 0 | 53 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 60 | 60 |
0 | 0 | 1 | 0 |
60 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 60 | 60 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,60,0,0,0,0,60],[1,0,0,0,0,60,0,0,0,0,60,0,0,0,0,60],[28,0,0,0,0,60,0,0,0,0,53,0,0,0,0,53],[1,0,0,0,0,1,0,0,0,0,60,1,0,0,60,0],[60,0,0,0,0,1,0,0,0,0,1,60,0,0,0,60] >;
240 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 3 | 4A | ··· | 4H | 4I | ··· | 4P | 5A | 5B | 5C | 5D | 6A | ··· | 6G | 10A | ··· | 10AB | 10AC | ··· | 10BH | 12A | ··· | 12H | 15A | 15B | 15C | 15D | 20A | ··· | 20AF | 20AG | ··· | 20BL | 30A | ··· | 30AB | 60A | ··· | 60AF |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 6 | ··· | 6 | 10 | ··· | 10 | 10 | ··· | 10 | 12 | ··· | 12 | 15 | 15 | 15 | 15 | 20 | ··· | 20 | 20 | ··· | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | 1 | ··· | 1 | 3 | ··· | 3 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 3 | ··· | 3 | 2 | ··· | 2 | 2 | ··· | 2 |
240 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C4 | C5 | C10 | C10 | C10 | C10 | C20 | S3 | D6 | D6 | C4×S3 | C5×S3 | S3×C10 | S3×C10 | S3×C20 |
kernel | S3×C22×C20 | S3×C2×C20 | Dic3×C2×C10 | C22×C60 | S3×C22×C10 | S3×C2×C10 | S3×C22×C4 | S3×C2×C4 | C22×Dic3 | C22×C12 | S3×C23 | C22×S3 | C22×C20 | C2×C20 | C22×C10 | C2×C10 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 1 | 1 | 16 | 4 | 48 | 4 | 4 | 4 | 64 | 1 | 6 | 1 | 8 | 4 | 24 | 4 | 32 |
In GAP, Magma, Sage, TeX
S_3\times C_2^2\times C_{20}
% in TeX
G:=Group("S3xC2^2xC20");
// GroupNames label
G:=SmallGroup(480,1151);
// by ID
G=gap.SmallGroup(480,1151);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-3,304,15686]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^20=d^3=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations